A revolutionary burner system for straight through radiant tubes.

The RASERT single-ended, radiant tube burner system reverses conventional thinking about firing straight radiant tubes. Unlike traditional single-ended radiant tubes (SERTs) the RASERT initiates combustion in the annulus formed between the radiant tube and the return tube within. Developed with the assistance of the Gas Technology Institute, this patented Reverse Annulus Single-Ended Radiant Tube firing method results in distinctive advantages for the user, whether converting an existing system or designing new.

- Increased thermal output for increased production
- Lower center tube temperature for longer tube life
- High efficiency heat transfer / recuperation for up to 50% fuel savings
Easy to Retrofit
Downtime adds significant costs to existing equipment upgrades. The RASERT focuses on a compact package for “fast fits” to many existing radiant tubes. A suite of accessories is available for easy conversion of your tubes.

Extends Radiant Tube Life
High and volatile alloy prices, labor and extended downtime add up to make replacing radiant tubes a costly process. RASERT’s lower center tube temperature and uniform outer tube temperature maximize radiant tube life by eliminating stress-inducing “hot spots” while keeping tube material temperatures at a minimum.

Highly Efficient Combustion
RASERT’s high efficiency and heat transfer result in fuel savings of up to 50%, reducing the impact of fuel price variations on your bottom line.

Low Emissions
Whether you are facing stringent NOx emissions or looking for reduction in greenhouse gases, the RASERT system meets the challenge. NOx emissions are reduced by a combination of cool annular flames, staged combustion and internal flue gas recirculation. High efficiency combustion also reduces the generation of CO2, a targeted greenhouse gas.

High Output
RASERT’s lower center tube temperature and quick annular heat release allow for increased thermal input. This increased input typically results in proportionate increases in production rate.

Fuel Costs $/million Btu
Fuel savings based on converting a cold air burner system with continuous operation at 75% of rated capacity for 8,000 hours per year.